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ABSTRACT 
PID controllers are still prevailing in building environmental control due to its easy deployment and acceptable 
performance. However, it is common in practice that the PID controllers are not tuned properly because of the 
limited time for commissioning and the inexperienced practitioners. This study proposes a simulation-based 
method to provide instructions for on-site tuning. Due to the uncertainties within both the physical problem 
and modelling process, the uncertainty analysis method is adopted. The transfer functions of local 
temperatures are identified and then used to calculate the PID parameters of the controller. A simple room 
with variable supply airflow rate is selected as a use case, in which seven types of uncertainty factors are 
addressed. The entire simulation process is conducted with CFD and Modelica modelling sequentially. From 
the histograms of the PID parameters, the values with the highest probabilities can be identified with the 
control performance verified to be acceptable.  
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INTRODUCTION 
The control of the heating, ventilation, and air-conditioning (HVAC) systems plays a very important role in 
the mission of accomplishing the goal of building energy conservation and thermal comfort maintenance. The 
most prevalent control law used in today’s HVAC control industry is still PID (Salsbury 2005). The 
performance of PID control is highly dependent on the quality of the tuning work. However, the conventional 
way of on-site PID tuning is often time-consuming as Bi et al. (2000) stated that the tuning process for an air 
pressure loop could last for 1-3 days and it could be even longer for a temperature loop. In addition, the tuning 
results are usually related to the conditions under which the parameter identification is performed. Due to the 
limited time for tuning, which is common in practice, it is almost impossible to perform the model 
identification under multiple conditions. This also partially results in the insufficient robustness and 
sometimes the sluggish or oscillatory control performance. What’s more, in the industrial practice, not all of 
the on-site practitioners are experienced enough to deliver the high-quality work, which furtherly exacerbates 
the unsatisfying performance. 
 
With the development of modeling techniques, simulation can assist in providing precedent knowledge for 
decision making and serve as a guidance for actual work. As for applying modelling technique in the PID 
tuning, simulations can be used to provide a reasonable initial guess of the PID parameters. Since the operating 
conditions can be easily manipulated during simulations (within the reasonable ranges), the result becomes 
more robust in terms of considering multiple scenarios. The on-site tuning work can be guided accordingly so 
that an acceleration of the process and a better control performance could be expected. It is the main motivation 
of this paper.  
In order to demonstrate the idea of the simulation-based PID tuning, we take the PID control for the room 
temperature as an example. The method of uncertainty analysis is adopted to handle the uncertainties within 
the process and identify a proper combination of the controller parameters under the influences of multiple 
uncertainty sources. The following sections will be arranged as methodology, results and conclusion.  
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METHODOLOGY 
Figure 1 shows the workflow of the proposed simulation-based PID tuning method, where TFI stands for 
transfer function (TF) identification. Unlike many of the other uncertainty analysis researches feeding all the 
uncertain inputs into one simulation tool, the proposed framework consists of two steps of simulations to 
handle different uncertainty factors separately. As show in Figure 1, the CFD simulation and the subsequent 
HVAC simulation are coordinated with each other through the intermediate transfer function models, which 
are identified from the transient CFD results.  The final transfer function models are identified using the results 
from the HVAC simulation and then used to determine the PID parameters.  
 
The case (M. Wang and Chen 2009) that we use to demonstrate the proposed approach is a simple cubic room 
(2.44m  2.44m  2.44m) with a cubic box (1.22m  1.22m  1.22m) right in the centre of the room, as 
shown in Figure 2. The box inside is to mimic the internal heat source, like the equipment or occupants. The 
supply airflow rate is controlled by a variable air volume (VAV) terminal, whose controller is the one to be 
designed through the proposed approach.  

 
Figure 1. Workflow of simulation-based PID tuning for room temperature controller 

 

 
Figure 2. Schematic of a simple room with a box inside 

 
Table 1 lists all the uncertainty factors, the distributions they follow, and how they are implemented in the 
simulations. The ranges of the inputs are estimated based on literature review, product leaflets, and 
engineering experiences. The supply air temperature varies from 14 oC to 16 oC indicating that it is controlled 
at 15 oC with the accuracy of 1 oC. The interior thermal load varies from 16 W/m2 to 40 W/m2, which is to 
introduce a heat source of 120 W to 300 W after multiplying the surface area of the box. The rise time of the 
damper is estimated from the product’s leaflets. The error of the damper’s PLC model means the calculated 
value may have an error within 40% compared to the real case (Ai and Mak 2013). The reason why we 
choose the uniform distribution for the aforementioned variables is that the uniform distribution generates the 
highest level of uncertainty of the inputs, which could be utilized to test the robustness of the proposed method. 
The measurement error follows a normal distribution with the average of zero and the standard deviation of 
0.55 (L. Wang and Haves 2014). At last, 16 different locations are selected as the potential candidates (see 
Figure 2). The sensors are positioned with 5 centimetres away from the vertical walls, at the height of 1.22m, 
and evenly distributed along the horizontal direction.  
 
Table 1. Uncertainty factors addressed in the case study 
# Uncertainty factors Distribution
1 Supply air temperature, ℃ Uniform (14, 16) 

2 
Interior thermal load 
(heat flux of the box), W/m2 

Uniform (16, 40) 
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3 Inner surface temperature of wall, ℃ Uniform (20, 30) 
4 Inner surface temperature of ceiling, ℃ Uniform (20, 30) 
5 Inner surface temperature of floor, ℃ Uniform (20, 25) 
6 Rise time of damper, s Uniform (90, 120)
7 Damper’s PLC error, % Uniform (-40, 40)
8 Temperature measurement error, ℃ Normal (0, 0.55) 
9 Sensor locations 16 discrete alternatives
Note: For the uniform distribution (a, b), a and b are the lower and upper limit. For the normal distribution 
(a, b), a and b represent the average value and the standard deviation, respectively. 

 
To improve the simulation efficiency, the LHS method is used (Hyun, Park, and Augenbroe 2007). The 
uncertainty factors #1 ~ 7 are involved in the sampling process and reflected in different simulation scenarios. 
100 scenarios are generated accordingly as the minimum number of cases is 10 (calculated by 4k/3, where k 
is the number of dimensions (Hyun, Park, and Augenbroe 2007)).  
 
The uncertainties of the room boundary conditions are implemented in the CFD simulation. Different CFD 
cases are generated according to the sampled values of those uncertainty factors. The influence of the 
measurement error is introduced by directly adding the noise to the transient temperature results of CFD during 
the TFI process #1. To take the uncertainties of the rise time and PLC error into account, different HVAC 
simulation cases are generated with the corresponding TF #1 embedded in. As for the sensor location, all the 
16 local temperature data are recorded from the CFD simulation and then used in the TFI process #1. 
Therefore, the CFD and HVAC simulations are conducted sequentially.  
 
The open-loop step tests are used in both of the CFD and HVAC simulations to obtain the responses of the 
local temperatures to their respective excitation signals. As in this case, the temperature is maintained by 
varying the supply airflow rate. Therefore, a step signal of the inlet mass flow rate is chosen as the excitation 
in the CFD simulation, while the damper’s control input is chosen for the HVAC simulation.  
 
During the CFD simulation, a steady state simulation is performed first at the inlet mass flow rate of 0.018 
kg/s. Once the calculation is converged, the transient simulation is initiated from the converged solution and 
the inlet mass flow rate is changed to 0.24 kg/s. The transient results of the 16 local temperatures are recorded 
from now on. The time step size and the number of iterations per time step are set as 1 second and 200, 
respectively. The total simulation time of the transient simulation is 500s, which is proven to be long enough 
for all the local temperatures to reach a new steady state. All the CFD simulations are conducted using Fluent 
version 19.0.  
 
To include the uncertainties within the HVAC components, i.e. the rise time and PLC error of the damper, we 
adopt the models from the Modelica Buildings Library (LBNL 2018) and run the simulations on the platform 
of Dymola. Figure 3 shows the diagram of the Modelica models used for HVAC simulation. On the left side, 
two “FixedBoundary” models are used to represent the upstream of the damper and the room with a constant 
pressure difference of 28 Pa between each other. The value of the pressure difference equals to the nominal 
pressure drop of the terminal damper at its maximum flow rate of 0.24 kg/s and 100% open position. As for 
the damper, we take the “VAVBoxExponential” model from the Buildings Library with a slight revision of 
the embedded filter module. The revised filter module could regulate the damper to move at the constant speed 

of , so that the actual length of transitional period would be dependent on the movement range. In 

addition, the nominal parameters of the damper model are selected from the product leaflet after sizing, as the 
nominal flow rate and pressure drop are 0.24kg/s and 28 Pa, respectively. More details of the damper model 
could be found in the document of Modelica Buildings Library (LBNL 2018). While on the right side is the 
TF #1 of the room’s local temperature, which is presented as a second-order model. The “realExpression” 
model in between transfers the flow rate signal to the TF #1. Then the output of TF #1 will be used for TFI 
#2.  
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Figure 3. Diagram of Modelica models for HVAC simulation 

 
Within the simulation process, two rounds of TFI are involved. In this case study, we use the Particle Swarm 
Optimization (PSO) algorithm with the linear dynamic inertia weight (Wetter 2003) to search for the optimal 
combination of the TF parameters. The transfer functions that we select for the TFI #1 and TFI #2 are the 
second-order model and the second-order-plus-delay model, respectively. Since we are going to fit the time 
series data of the temperature to the transfer functions, the transfer functions in time domain are used, as 
shown in equation (1) (for TFI #1) and equation (2) (for TFI #2) with the step input signals included.  
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where the step is the size of the step signal, K is the gain, 𝑇 , 𝑇  are the first and second order time constants, 
D is the delay, IniVal is the initial value of the variable. Since the  (1 and (2Error! Reference source not 
found. assume the step signal starts from zero, the initial supply airflow rate (0.018 kg/s) should be subtracted 
from the input of TF #1 (see in Figure 3), and the initial control input signal (lower limit of damper position, 
0.1) should be subtracted from the input of TF #2 (see in Figure 4).  
 
During the optimization, the sum of squared error (SSE) is selected as the objective function, which is 
calculated as:  

𝑆𝑆𝐸  𝑀 𝑡 𝐺 𝑡 ,  (3)

where 𝑀 𝑡  is the value calculated by the models and 𝐺 𝑡  is the value calculated by the transfer function. 
The time series data is sampled with the interval of one second.  
 
The configuration parameters for PSO are listed in Table 2. To accelerate the optimization process, the process 
gain K is determined manually to reduce the dimensions of the problem. The value of K is calculated as the 
ratio of the output variation range to the input range. When the artificial noise is added, the new steady-state 
value of the output is obtained by averaging the data over the last 50 seconds. While the other TF parameters, 
i.e. the time constants and delay (if applicable), will be determined by PSO. The bounds and the constraint are 
also presented in Table 2.  
 
Table 2. Configuration parameters, variable bounds, and constraint of PSO 
PSO configuration parameters 
Swarm size 20 Maximum iteration 1000
Initial inertia weight 0.9 Final inertia weight 0.4
Cognition acceleration factor 1.5 Social acceleration factor 1.2
Bounds of variables 
1st-order time constant, T1/ sec [0, 500]
2nd-order time constant, T2/ sec [0, 500]
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Delay time, 𝜃/ sec [0, 100] 
Constraint T1 > T2

 
After all the transfer functions #2 are identified for all the different scenarios and sensor locations, the PID 
parameters can be calculated accordingly. From the formulas mentioned in the methodology section, we select 
the SIMC-PID tuning method (Skogestad 2001). The formulas to calculate the parameters of an ideal PID 
controller for a second-order-plus-delay process are as follows: 
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where 𝐾 , 𝑇 , and 𝑇  are the PID parameters. 
 
For some cases, the delay time of TF #2 is identified as zero and the process becomes a second-order one. For 
those cases, the above formulas cannot be applicable because of dividing by zero. As suggested by Skogestad 
(2001), the second-order process can be approximated as a first-order-plus-delay process (𝑇 0  by using 
the “half rule”. The new parameters can be calculated as 
 

𝐾 𝐾;
𝑇 𝑇 0.5𝑇 ;
𝐷 0.5𝑇 ;

 (5)

 
where 𝐾 , 𝑇 , and 𝐷  is the parameters of the new process model. Then Equation (4) can be applicable again. 
Only the original PID controller becomes a PI controller since 𝑇 0 and 𝑇 0 accordingly. 
 
At last, to verify the usability of the proposed method, we select the most probable combination of the PID 
parameters and test the control performance of it. The identical PID parameters are applied to control the local 
temperatures at the 16 sensor locations under all the different scenarios. To do so, we build another Modelica 
model to perform the verification thoroughly. Figure 4 shows the diagram of the models. 

 
Figure 4. Diagram of Modelica models for PID control performance validation 

 
The models surrounded by the dash-line rectangle are implementation of TF #2. The output of TF #2 will plus 
the noise first and then be sent to the controller. During the simulation, the TF parameters will be read from 
an external txt file for all the scenarios and sensor locations. Since the local temperatures are significantly 
different from place to place. It is not reasonable to use the same setpoint signal for all the scenarios. Thus, 
we use the temperature difference from the initial temperature of each case as the setpoint. During the control 
performance test, the local temperature will be first controlled to a temperature lower than its initial value by 
1 oC. After the local temperature reaches the new steady state, the setpoint will experience a step change of -
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3 oC. Then the dynamics of the local temperature from now on will be used to evaluate the control 
performance.  
 
RESULTS 
Firstly, the TF #1 under the step signal of mass flow rate is identified from the CFD results. To demonstrate 
the fitness of the identified TF, the identification process of one local temperature is selected as an example. 
Figure 5 (a) compares the output of TF #1 with the CFD result without noise and the CFD result with noise. 
As we can see, although the noise signal is added to the raw data, the lines of the TF #1 output and the CFD 
result without noise overlap with each other for most of the transitional period, only except for the short period 
of oscillation at the very beginning. With the help of the manual selection for the gain K, the identified TF 
could reach the almost identical new steady state. Additionally, the dynamics of the identified TF is almost 
the same as the raw CFD data without noise. It means the identified time constants, 𝑇  and 𝑇  are also 
appropriate.  
 
Likely, the TF #2 is identified from the Modelica results under the step signal of the damper’s control input. 
Figure 5 (b) compares the output of TF #2 with the Modelica result. As the damper’s actuation process is 
considered, a short delay time is identified during TFI #2. Similarly, a good fitness is also achieved by the 
proposed identification method as in TFI #1. 

 
(a) 

 
(b) 

Figure 5. Comparisons between the outputs of the identified transfer functions and CFD results (a), 
Modelica results (b) 

 
Since we have 100 samples generated by LHS method and 16 different alternative locations for the 
temperature sensors, 1600 different combinations of the transfer function #2 and the corresponding PID 
parameters are obtained in total. The histograms of the PID parameters are presented in Figure 6. The number 
of bins is set as 30. As can be seen in the sub-figures, we highlight the values between the 5th and 95th percentile 
with different color to identify the probable range of the variables, which means the variable would be within 
this range by 90% chance.  In addition, the most probable combination of the PID parameters is annotated in 
Figure 6.  

 
Figure 6. Distributions of PID parameters for all sensor locations and scenarios 

 
As for the control performance validation, 1600 dynamic responses of local temperatures are generated 
considering the 100 scenarios and 16 sensor locations.  Figure 7 shows all the responses of local temperatures. 
The maximum dynamic deviation is about 1.2 oC and it takes about 300s for the temperature to reach in the 

0.5 oC error zone of the new steady state. After that the local temperature could be maintained near the new 
setpoint with a small error due to the interference of the measurement error. Therefore, the control 
performance is generally acceptable when the most probable PID parameters are identified from all the results 
of different scenarios and sensor locations.  
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Figure 7. Control performance at all sensor locations tested under all scenarios 

 
CONCLUSION 
This paper proposed a simulation-based PID tuning method for the room temperature control using uncertainty 
analysis. The main workflow is by a use case. The indirect-coupling strategy is used to link the CFD and 
HVAC simulation together, which is performed by conducting the two types of simulations sequentially. Two 
separate processes of identifying the transfer functions of the room temperature are involved. In the case study, 
seven types of uncertainties are accounted to evaluate their impacts on the final PID parameters. The 
application of the proposed method can even go beyond the scope of the case study, depending on the specific 
configuration of the HVAC system. From the results of the case study, the uncertainties within the PID tuning 
process are clearly illustrated, as the parameters spread over a wide range. The most probable PID parameters 
could be identified from the histogram results. The control performance is generally acceptable when the most 
probable parameters are applied under all the scenarios.  To enhance the practicality of the proposed method, 
the future works of the simulation-based PID tuning could be focused on the simplification of the 
implementation procedure and the reduction of the computational cost.  
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